
Digital Signal Processing
Basic Concepts

Part 1: Sampling

written in June/July 2023 by chn

Website: http://www.chn-dev.net/

Mastodon: https://mastodon.art/@chn/

Github: https://github.com/chn-dev/

Email: chn@chn-dev.net

Introduction

Designing and implementing a software synthesizer or audio effect is a fascinating and rewarding
challenge. The maths involved may seem a little daunting for many people, though. This series of
short articles summarizes what I have learned over the years about the topic. I’m writing them in
order to consolidate my own knowledge and to help other people trying to do some audio/music
programming of their own. The concepts will be demonstrated with example programs in C++
using SDL2 and/or JUCE, however the focus is on the fundamental principles. We’ll start by
discussing what digital audio is mathematically, and work our way up to the point where we can
design and implement our own digital filters.

1. Sampling

Before we can apply any computations to audio, we need to get audio data into our computer. That
can be done by either directly generating audio data within the computer itself with algorithms or by
recording and thereby digitizing sounds from the “real world”. Either way, the result is always
sequence of quantized numbers in the computer’s memory, whereby each number represents the
strength of the audio signal at a certain point in time. That’s what we call a time-quantized and
value-quantized signal.

http://www.chn-dev.net/
mailto:chn@chn-dev.net
https://github.com/chn-dev/
https://mastodon.art/@chn/

1.1 Time Quantization

It can be shown (not here, not now) that all signals, including noise, can be constructed from a
combination of sine signals of different frequencies, amplitudes and phases. So it makes sense to
sine signals when demonstrating signal processing concepts.

Here’s a basic sine function as a time continuous signal:

x (t)=sin(ω t) , t∈ℝ, with

ω=2π f signal being the angular frequency

The time parameter t is a real number, i.e. within every time interval, there is an infinite number of
points with no gaps between them. We put round brackets around the parameter t to make clear that
the function defines a time-continuous signal.

When going from continuous time to discrete time, we take sample measurements of the continuous
signal at regular time intervals. The resulting discrete-time signal is thereby only defined at specific
points in time with a fixed distance between them. That distance between the samples is called the

sampling rate T s. Its inverse is the sampling frequency f s=
1
T s

.

Through the process of sampling, a continuous sine signal x (t) becomes a time-discrete signal x [n]:

x [n]=x (T sn)=sin (ω T sn)=sin(2π f signal T sn)=sin(2π
f signal
f s

n), n∈ℕ,

We put square brackets around the discrete parameter n to make clear that this is a time-discrete
signal.

As an example, let’s consider sampling a sine signal with the signal frequency f signal=1Hz at a

sampling frequency f s=4Hz. This translates the time-continuous signal

x (t)=sin(2π 1Hz t)

to the time-discrete signal

x [n]=sin(2π 1Hz
4Hz

n)=[0 ,1 ,0 ,−1 ,0 ,1,0 ,−1, ..],

as illustrated in the following plot:

These four samples are sufficient to reconstruct the original, time-continuous signal.

Now let’s consider sampling the time-continous signal x (t)=sin(2π5hz t) at the same sampling

frequency f s=4Hz, as shown in the following plot:

The sampled, time-discrete signal is the same as before, namely

 x [n]=sin(2π 5Hz
4Hz

n)=[0 ,1 ,0 ,−1 ,0 ,1 ,0 ,−1 , ..].

The same is true at f s=9Hz:

Time-continuous signals with different frequencies can obviously result in the same time-discrete
signal when using the same sampling frequency.

Or more generally, all time-continuous signals

xm(t)=sin(2π (f signal+m f s)t) ,m∈ℤ ,t∈ℝ

result in the same time-discrete signal x [n] when sampling them with the sampling frequency f s, as

shown in the following diagram:

The frequency spectrum becomes periodic, i.e. adding a whole multiple of the sampling frequency
f s to the signal frequency f signal results in the same time-discrete signal. Or in mathematical terms:

x [n]=xm(
n
f s

)=sin(2π
f signal+m f s

f s
n) , n∈ℤ ,m∈ℤ

→ x [n]=sin (2πn
f signal
f s

+2πnm
f s
f s

)=sin (2πn
f signal
f s

+2πnm)=sin (2πn
f signal
f s

) , n∈ℤ ,m∈ℤ

Frequencies beyond ±1
2
f s are shifted back into the frequency spectrum between −1

2
f s and

1
2
f s.

That’s what we call aliasing.

It should be noted that negative signal frequencies can be regarded just the same way as signals
with the same absolute frequency played backwards or with a negative sign:

sin(−ω t)=−sin (ω t)

The absolute frequency is the same - there’s no audible difference.

−1
2
f s−f s−3

2
f s

−2 f s
1
2
f s

f s 3
2
f s

2 f s 5
2
f s−5

2
f s

1.2 Value Quantization

The second thing that happens when digitizing a signal is value quantization. Each measurement of
the signal at a specific point in time can only have exactly one value from a finite set of possible
values after quantization. For example, if you encode a measurement (or sample) as an 8bit integer

value, each resulting value can have only exactly one of 28=256 possible values ranging from 0 to
255.

Let’s again start with a simple time-continuous sine signal ranging from -1 to 1 at a signal freqency
of 1Hz:

x (t)=sin(ω t)=sin(2π 1Hz t)

We’re going to quantize the values of that signal as 4bit integers, giving us a value range from 0 to
15. Here’s a plot of the results of that:

The black line shows the original, (time and value) continuous signal. The green line shows the
original signal after quantization to a value range from 0 to 15, representing a 4bit integer.

Through quantization we introduce measurement errors which can be audible as so-called
quantization noise, shown by the red line in the plot as the absolute difference between the
continuous signal and the quantized signal. Assuming an ideal quantizer, the error introduced is at

most 1 in absolute terms and
1

2b
 in relation to the maximum possible amplitude of the signal.

Quantizing a signal with 4bits introduces an error of 100 %× 1

24
=6.25 %. In audio, we usually

express a relative signal strength in terms of dB or Decibel:

LP=10 log10
1

2b
dB

When quantizing with 4 bits, the quantization noise as a power of

LP=10 log10
2

14
dB=−12.04dB.

1.3 Summary

When digitizing a signal, its time as well as its values are quantized. Time quantization introduces
aliasing, an effect where the frequency spectrum of the signal becomes periodic. Value
quantization introduces digital noise which becomes stronger with fewer number of bits used for
representing the values.

The result of the digizing process (or sampling) is a time-discrete, value-quantized signal x [n]
which can be used for applying signal processing algorithms in a computer.

Exercise:

Create a small program or plugin which demonstrates the audible effects of aliasing and
quantization noise.

	Introduction
	1. Sampling
	1.1 Time Quantization
	1.2 Value Quantization
	1.3 Summary

